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ABSTRACT
Magnetic flux tubes such as those in the solar corona are subject to a number of instabilities. Important among them is the kink
instability which plays a central part in the nanoflare theory of coronal heating, and for this reason in numerical simulations it
is usually induced by tightly-controlled perturbations and studied in isolation. In contrast, we find that when disturbances are
introduced in our magnetohydrodynamic flux tube simulations by dynamic twisting of the flow at the boundaries fluting modes
of instability are readily excited. We also find that the flute instability, which has been theorised but rarely observed in the coronal
context, is strongly enhanced when plasma viscosity is assumed anisotropic. We proceed to investigate the co-existence and
competition between flute and kink instabilities for a range of values of the resistivity and of the parameters of the anisotropic and
isotropic models of viscosity. We conclude that while the flute instability cannot prevent the kink from ultimately dominating, it
can significantly delay its development especially at strong viscous anisotropy induced by intense magnetic fields.
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1 INTRODUCTION

The helical kink instability is a form of ideal magnetohydrodynamic
(MHD) instability which occurs in highly twistedmagnetic flux tubes
such as those making up much of the solar corona (Reale 2014) and
has been well studied in the coronal context (Hood & Priest 1979;
Hood et al. 2009; Browning & Van der Linden 2003; Bareford &
Hood 2015; Quinn et al. 2020c). Given its energetic nonlinear devel-
opment, it is considered a potential mechanism for heating the solar
corona through the theory of nanoflares (Klimchuk 2006; Browning
1991) and a key mechanism in the production of solar flares (Hood
& Priest 1979). Previous work by the same authors has investigated
a twisted magnetic flux tube already linearly unstable to the helical
kink instability, focussing specifically on the effect of anisotropic
viscosity on the nonlinear dynamics (Quinn et al. 2020c). In (Quinn
et al. 2020c) and most other investigations of the kink instability e.g.
(Hood et al. 2009), a perturbation is applied to an already signifi-
cantly twisted flux tube. An alternative way to excite the instability
(and the way employed here) is to start with an initially straight field
and apply twisting motions at the boundaries to form a twisted flux
tube which eventually becomes unstable. This kind of dynamic exci-
tation of the kink instability is useful in that it represents more closely
actual evolution of magnetic flux tubes and the associated instabil-
ities in the solar corona. In our simulations, the dynamic twisting
of the flux tube reveals an additional instability, the flute instability,
which has been theorised (for example, in (Priest 2013)).While oscil-
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lations resembling flute perturbations have been found in simulations
of coronal loops (Terradas et al. 2018), to our knowledge, this is the
first time the flute instability has been investigated computationally
in a coronal context.
The flute instability arises inmagnetised plasmaswhere the plasma

pressure gradient is oriented in the same direction as the field line
curvature, that is the pressure and magnetic tension forces compete.
This is similar to the competition between pressure and gravitational
forces which gives rise to the Rayleigh-Taylor instability (RTI). In
magnetohydrodynamic terminology, the RTI is a typical example
of an ideal interchange instability, where magnetic field lines are
minimally bent and are, instead, exchanged during the evolution of
the instability. The ideal flute instability is another example of an
ideal interchange instability but confined to a cylindrical geometry,
the term “flute instability” referring to its likeness to a fluted column.
In a twisted flux tube like a simple, unbraided coronal loop, the
magnetic curvature is always directed towards the axis so the tube
may be unstable to flutingwhen the pressure decreases outwards from
a high-pressure core. Such a pressure distribution is generated in the
flux tubes studied here as a result of the driving. The appearance
of the flute instability is illustrated by, for example, the pressure
contours in figure 4, where the perturbations follow the pitch of the
twisted field.
In other solar contexts, interchange instabilities can be found in the

form of ballooning modes in arcades (Hood 1986), as the instability
which forms tubes of specific size in the photosphere (Bunte 1993)
and in the buoyancy of flux tubes (Schuessler 1984). However, the
flute instability specifically is more commonly studied in fusion con-
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2 J. Quinn and R. Simitev

texts (Mikhailovskii 1998; Zheng 2015;Wesson 1978). In fusion, the
focus is generally on understanding how a particular plasma device
may be stabilised to the instability in particular geometries such as
that of the mirror machine (Jungwirth & Seidl 1965) or in toroidal
geometries such as the tokomak (Shafranov 1968). The resistive flute
instability (also known as the resistive interchange instability) can be
excited even when the ideal flute instability is stabilised. As a result,
this has been given significantly more attention (Johnson & Greene
1967; Correa-Restrepo 1983). While this body of research is useful
and applicable in solar contexts, it is mostly limited to the study
of the stability and linear development of the flute instability, the
nonlinear development being of secondary importance in the investi-
gation of fusion devices. More detailed investigations of its nonlinear
development is required to understand its importance in the context
of coronal dynamics and coronal heating. The development of the
flute instability and its interaction with the simultaneously growing
kink instability is the main focus of this work and the experiments
described here represent an initial exploration into the nonlinear flute
instability in the solar corona.

In addition to ourmain goal, of particular interest here is also the ef-
fect of anisotropic plasma viscosity, which in the following is found to
strongly influence the growth of the flute instability. It is well known
that viscosity in magnetised plasmas (such as those which make up
the solar corona) is anisotropic and strongly dependent on the strength
and direction of the local magnetic field (Hollweg 1986, 1985; Bra-
ginskii 1965). To take this into account, in (MacTaggart et al. 2017),
we developed a phenomenologicalmodel of anisotropic viscosity that
captures the main physics of viscosity in the solar corona as outlined
in the analysis of Braginskii (1965), namely parallel viscosity in re-
gions of strong field strength and isotropic viscosity in regions of very
weak or zero field strength. For brevity, we will refer to this model of
viscosity as “the switching model”. In (Quinn et al. 2020c, 2021) we
implemented the switching model as a module for the widely-used
general MHD code Lare3d (Arber et al. 2001), and demonstrated
significant effects of anisotropic viscosity on the development of the
nonlinear MHD kink instability and the Kelvin-Helmholtz instabil-
ity. More generally, the interest in anisotropic viscosity stems from
the open question of which heating mechanism (viscous or Ohmic) is
dominant in the solar corona (Klimchuk 2006), an important facet of
solving the coronal heating problem. Using scaling laws, it has been
suggested that viscous heating (generated through anisotropic vis-
cosity) can dwarf that of Ohmic heating (Craig & Litvinenko 2009;
Litvinenko 2005). However, due to computational and observational
limitations, this cannot be directly tested, and so the influence of
other factors such as small scale instabilities and turbulence is rel-
atively unknown (Klimchuk 2006). In addition to directly heating
the plasma, viscosity plays a part in the damping of instabilities and
waves (Ruderman et al. 2000). It is this effect we are most interested
in here, and it shall be reported that the use of anisotropic viscosity
permits the growth of the flute instability, which is otherwise strongly
damped by isotropic viscosity.

This paper is organised as follows. Section 1.1 introduces the flute
instability and relevant linear analyses, section 2 describes the gov-
erning equations, coronal loop model and details of the numerical
parameters, section 3 presents the overall development of the flute
instability, before discussing features unique to the two values of
resistivity studied, section 4 discusses the limitations of the simula-
tions, with suggestions for future work, and section 5 presents our
conclusions in the wider context of coronal heating.

1.1 The flute instability

In general, the stability of a cylindrical twisted magnetic flux tube is
analysed using perturbations of the form

b (𝑟, \, 𝑧) = b (𝑟)𝑒𝑖 (𝑚\+𝑘𝑧) , (1)

where 𝑚 and 𝑘 are the wavenumbers in the azimuthal and axial
directions, \ and 𝑧, respectively and 𝑟 is the radial coordinate in
cylindrical polars. The helical kink instability occurs for perturba-
tions where 𝑚 = 1, 𝑘 ≠ 0 and is the only instability of this form
which is a body instability, that is it moves the entire body of the
flux tube. Perturbations where 𝑚 > 1 are termed flute or interchange
instabilities.
When the magnetic field is sheared, as in a twisted magnetic

flux tube, an interchange instability (such as the flute instability) is
confined to a surface where the peaks and troughs follow the shear of
the field. That is, the instability is confined to the surface where the
perturbation wavevector (0, 𝑚/𝑟, 𝑘) is perpendicular to the direction
of the field, known as the “resonance surface”. In an axisymmetric
twisted flux tube the resonance surface is located at a radius 𝑟 given
by
𝑚

𝑟
𝐵\ (𝑟) + 𝑘𝐵𝑧 (𝑟) ≈ 0. (2)

The stability of an infinite cylindrical flux tube to perturbations of
the form (1) is given by the classical Suydam’s criterion (Suydam
1958)

𝐵2𝑧𝑆
2

4
+ 2𝑟 𝑝′ > 0, (3)

where 𝑆 = 𝑟𝑞′/𝑞 is a measure of the shear, 𝑞 = 2𝜋𝑟𝐵𝑧/𝐿𝐵\ is
the safety factor for a flux tube of length 𝐿 and a prime denotes
differentiation with respect to 𝑟 (Mikhailovskii 1998). This applies
to both flute and kink instabilities although many additional effects
such as line-tying are not incorporated into the corresponding linear
analysis. The effect of line-tying on the kink instability is investigated
in (Hood & Priest 1979). Where (3) is not satisfied, the flux tube
may be unstable to perturbations of the form (1). When 𝑚 > 1, the
perturbations remain local to resonant surfaces given by (2). When
Suydam’s criterion is satisfied and the flux tube is linearly stable,
it may still be unstable to non-local perturbations, where the shear
and pressure are small enough that interchange perturbations do not
need to satisfy (2). Additionally, the inclusion of resistivity generally
reduces the stabilising effect of the shear, permitting growth of a
resistive interchange mode, albeit at a slower rate than that of the
ideal instability (Mikhailovskii 1998). It will be found that the ideal
linear analysis ofMikhailovskii (1998) is sufficient for understanding
the flute instabilities investigated here since the associated flux tubes
adequately fail the criterion (3).
While Suydam’s condition gives an indication of the stability of a

flux tube to a given perturbation, the linear growth rate of the ideal
flute instability 𝛾 can be found via a stability analysis analogous to
that of the Rayleigh-Taylor instability (see (Goldston 2020)) and is
given by

𝛾2 =
2|∇𝑝 |
𝜌𝑅𝑐

, (4)

where 𝑅𝑐 is the radius of curvature of the magnetic field. This equa-
tion only applies when the pressure gradient and radius of curvature
vector are in the same direction, that is the plasma is constrained by
a concave magnetic field such that the pressure forces and magnetic
tension forces are in competition. In a cylindrical, twisted flux tube,
the field is always concave towards the central axis of the tube, so any
inwardly directed pressure gradient is potentially unstable to fluting.
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Throughout this paper, the twisted flux tube generated by the
drivers has a pressure profile which is approximately axisymmetric,
and independent of 𝑧 away from the boundaries at 𝑧 = ±2, and has a
negative gradient, hence |∇𝑝 | may be written as −𝑑𝑝/𝑑𝑟 . Similarly,
away from the boundaries, the magnetic field has a negligible 𝑟
component and little dependence on \ and 𝑧, allowing the field to be
approximated as 𝑩 = (0, 𝐵\ (𝑟), 𝐵𝑧 (𝑟))T, in cylindrical coordinates
(𝑟, \, 𝑧). For a twisted field of this form, the radius of curvature is
given by

𝑅𝑐 =
1

| (𝒃 · ∇)𝒃 | =
𝑟

𝑏2
\

, (5)

where 𝒃 = 𝑩/|𝑩 | is the unit vector in the direction of the magnetic
field and 𝑏\ is the component of 𝒃 in the azimuthal direction. These
approximations allows the growth rate to be written as

𝛾2ideal =
−2𝑝′
𝜌𝑅𝑐

. (6)

This approximation for the growth rate continues to hold while the
flux tube remains relatively axisymmetric, that is while the kink
instability remains in its linear phase.
The stability criterion (3) and the linear growth rate approximation

(6) are useful only as a guide and for approximate analysis of the
numerical simulations presented in this work. The precise form of
the equilibrium state and the perturbations needed for the validity
of (3) and (6) were used in (Quinn et al. 2020c). In contrast, in
the experiments reported in the following the system is driven and
instabilities occur spontaneously due to random perturbation. As a
result of the driving, the flux tube is also not in static equilibrium
initially.

2 MATHEMATICAL FORMULATION AND NUMERICAL
SETUP

We consider the magnetohydrodynamic equations for the density 𝜌,
plasma velocity 𝒖, pressure 𝑝, magnetic field 𝑩 and internal energy
Y, in their non-dimensionalised visco-resistive form
𝐷𝜌

𝐷𝑡
= −𝜌∇ · 𝒖, (7a)

𝜌
𝐷𝒖

𝐷𝑡
= −∇𝑝 + 𝚥 × 𝑩 + ∇ · 𝝈, (7b)

𝐷𝑩

𝐷𝑡
= (𝑩 · ∇)𝒖 − (∇ · 𝒖)𝑩 + [∇2𝑩, (7c)

𝜌
𝐷Y

𝐷𝑡
= −𝑝∇ · 𝒖 +𝑄a +𝑄[ , (7d)

where [ is the non-dimensionalised resistivity, 𝚥 = ∇ × 𝑩 is the cur-
rent density and the terms 𝑄a = 𝝈 : ∇𝒖 and 𝑄[ = [ | 𝚥 |2 are viscous
heating and Ohmic heating, respectively. The system is closed by the
inclusion of the equation of state for an ideal gas

Y =
𝑝

𝜌(𝛾 − 1) , (8)

with the specific heat ratio is given by 𝛾 = 5/3.
Two different models for the viscosity stress tensor 𝝈 will be

compared and contrasted in this study. The first model is the con-
ventional isotropic (or Newtonian) viscosity stress tensor used in the
vast majority of the existing literature, so that,

𝝈 =𝝈iso = a𝑾, (9)

where a is the viscous transport parameter, generally referred to as
the viscosity,

𝑾 = ∇𝒖 + (∇𝒖)𝑇 − 23 (∇ · 𝒖)𝑰, (10)

is the rate of strain tensor, and 𝑰 is the 3 × 3 identity tensor. The
second model, which is the one of actual interest, is the anisotropic
viscosity stress tensor given by

𝝈 = 𝝈aniso = a

[
3
2
(𝑾𝒃 · 𝒃)

(
𝒃 ⊗ 𝒃 − 1

3
𝑰

)]
, (11)

where 𝒃 is the unit vector in the direction of the magnetic field.
Expression (11) is identical to the strong field approximation of the
general anisotropic viscosity tensor derived byBraginskii (Braginskii
1965). Expressions (9) and (11) arise as asymptotic limits of themore
general switching model used in our earlier works (MacTaggart et al.
2017; Quinn et al. 2020c, 2021) which, includes both isotropic and
anisotropic contributions and can switch gradually between them
depending on the strength of the magnetic field at a given spacio-
temporal location. For example, in the vicinity of a null point where
the magnetic field becomes weak the isotropic viscosity contribution
becomes dominant in the switching model. Switching between the
two limit cases is not relevant in the present studywhere the variations
in the magnetic field are not significantly large.
The non-dimensionalisation of equations (7) is identical to that

used in our earlier works (Quinn et al. 2020c, 2021) and in ref-
erence (Arber et al. 2001) that describes the code Lare3d we use
for numerical solution, see further below. A typical magnetic field
strength 𝐵0, density 𝜌0 and length scale 𝐿0 are chosen and the
other variables non-dimensionalised appropriately. Velocity and time
are non-dimensionalised using the Alfvén speed 𝑢𝐴 = 𝐵0/

√
𝜌0`0

and Alfvén crossing time 𝑡𝐴 = 𝐿0/𝑢𝐴, respectively. Temperature
is non-dimensionalised via 𝑇0 = 𝑢2

𝐴
�̄�/𝑘𝐵 , where 𝑘𝐵 is the Boltz-

mann constant and �̄� is the average mass of ions, here taken to be
�̄� = 1.2𝑚𝑝 (a mass typical for the solar corona) where 𝑚𝑝 is the
proton mass. Dimensional quantities can be recovered by multiply-
ing the non-dimensional variables by their respective reference value
(e.g. 𝑩dim = 𝐵0𝑩). The reference values used here are 𝐵0 = 5×10−3
T, 𝐿0 = 1Mm and 𝜌0 = 1.67 × 10−12 kg m−3, giving reference val-
ues for the Alfvén speed 𝑢𝐴 = 3.45Mm s−1, Alfvén time 𝑡𝐴 = 0.29 s
and temperature 𝑇0 = 1.73 × 109 𝐾 .
The following initial and boundary conditions are used to form a

magnetic flux tube and excite instabilities by dynamic twisting. The
magnetic field is prescribed as initially straight and uniform,

𝑩 = (0, 0, 1)T, (12)

in a cube of size [−2, 2]3, with further test simulations run using
an elongated domain of size 4 × 4 × 20. Initially, the velocity is set
everywhere to 𝒖 = 0, the density to 𝜌 = 1, and the internal energy to
Y = 8.67 × 10−4. This corresponds to a typical coronal temperature
of 106 K and a plasma beta of 1.11 × 10−4. At the boundaries,
the magnetic field, velocity, density, and energy are fixed to their
initial values and their derivatives normal to the boundaries are set
to zero except where twisting velocity “driver”, described below, is
prescribed.
The flux rope is formed by prescribing a slowly accelerating, ro-

tating flow at the upper 𝑧-boundary as

𝒖 = 𝑢0𝑢𝑟 (𝑟)𝑢𝑡 (𝑡) (−𝑦, 𝑥, 0)𝑇 , (13)

where 𝑢𝑟 (𝑟) describes the radial profile of the twisting motion in
terms of the radius 𝑟2 = 𝑥2 + 𝑦2,

𝑢𝑟 (𝑟) = 𝑢𝑟0 (1 + tanh(1 − 𝑟𝑑𝑟2)), (14)

where 𝑟𝑑 controls the radial extent of the driver, 𝑢𝑟0 is a normalising
factor, and 𝑢𝑡 (𝑡) describes the imposed acceleration of the twisting
motion,

𝑢𝑡 (𝑡) = tanh2 (𝑡/𝑡𝑟 ), (15)

MNRAS 000, 1–10 (2021)
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Figure 1. Radial velocity profile 𝑢𝑟 (𝑟 ) and acceleration profile 𝑢𝑡 (𝑡) of the
driver (13) for parameters 𝑢0 = 0.15, 𝑟𝑑 = 5 and 𝑡𝑟 = 2.

where the parameter 𝑡𝑟 controls the time taken to reach the final driver
velocity 𝑢0. The functions 𝑢𝑟 (𝑟) and 𝑢𝑡 (𝑡) are plotted in figure 1.
At the lower boundary, the flow is in the opposite direction. This
form of driver allows the system to be accelerated slowly enough
that the production of disruptive shocks and fast waves is minimal.
It is unavoidable that some waves are produced during the boundary
acceleration, however these usefully provide a source of noise which
eventually forms a perturbation. The driver velocity is set to 𝑢0 =

0.15, the normalising factor is 𝑢𝑟0 = 2.08, and setting 𝑟𝑑 = 5
corresponds to a driver constrained to 𝑟 < 1 and with a peak velocity
at 𝑟 ≈ 0.38. The ramping time is set to 𝑡𝑟 = 2, resulting in an
acceleration from 0 to 𝑢0 over approximately 5 Alfvén times. These
driver parameters correspond to a peak rotational period of 𝑇𝑅 =

15.92, the length of time taken for one full turn to be injected by a
single driver. Both drivers result in twist being added at a rate of 2𝜋
every 7.96 Alfvén times. The twist profile across the entire flux tube
develops in such a way that by 𝑡 ≈ 20, it is qualitatively similar to
those studied in (Quinn et al. 2020c; Hood et al. 2009; Bareford &
Hood 2015) however the length of the flux tubes differs significantly.
This configuration produces a 𝑧-directed tube of increasingly twisted
magnetic field that eventually becomes unstable to both the flute
instability and the helical kink instability.
The problem formulated above is solved numerically using the

staggered-grid, Lagrangian–Eulerian remap code for 3D MHD sim-
ulations Lare3D of Arber et al. (2001) where a new module for
anisotropic viscosity has been included as detailed in (Quinn et al.

2021). The resolution used in the current work is 512 grid points per
dimension, comparable to the highest resolution kink instability stud-
ies of Hood et al. (2009) or medium resolution studies of Bareford
& Hood (2015).

3 RESULTS

We focus the attention on two selected pairs of simulations, one pair
where the background resistivity is set to [ = 10−3 and another where
[ = 10−4. As in (Quinn et al. 2020c), only background resistivity
is used. Each pair consists of one simulation using isotropic viscos-
ity (9) and another one using the anisotropic model (11). The value
of viscosity is set to a = 10−4 in all cases. The overall development
of both the flute and the kink instabilities is broadly similar for the
two values of resistivity and is described initially. Similar simula-
tions were performed with a longer flux tube of length 20 instead of
the tubes shown here with length 4, and the results were found to be
qualitatively similar. Focus is then placed on the detailed description
of instabilities in the [ = 10−4 cases, with the aim of comparing
the effects of the two viscosity models. Then further features of the
[ = 10−3 cases are summarised.

3.1 Mechanism and general development of instability

Initially and in all cases computed, the twisting at the upper and
lower boundaries gives rise to a pair of torsional Alfvén waves which
proceed to travel along the tube from the upper and lower boundaries
to their respective opposite boundaries. The interaction between these
waves produces an oscillating pattern in the kinetic energy with a
period of approximately 4 Alfvén times, equal to the time taken for
an Alfvén wave to traverse the entire length of the domain as visible
early in figure 5a.
As the field continues to be twisted, currents form, due to the

local shear in the magnetic field, and heat the plasma through Ohmic
dissipation. Due to the radial form of the driver, the magnitude of
the current density is greatest at the axis of the tube, then decreases
radially outwards as seen in figure 2a. The orientation of the twisting
produces a current flowing in the negative 𝑧-direction for 𝑟 / 0.5.
At 𝑟 ≈ 0.5 (corresponding to the radius of peak driving velocity)
the current switches orientation and is in the positive 𝑧-direction in a
shell where 0.5 / 𝑟 / 0.8. This form of a twisted field with an inner
core of current in one direction surrounded by a shell of oppositely-
directed current is similar to the current configuration arising due to
the field prescribed in (Quinn et al. 2020c).
This current profile is reflected in the radial Ohmic heating profile

(figure 2b) and, consequently, in the radial pressure profile (figure 2c).
The highly pressurised core extends to 𝑟 ≈ 0.2–0.4 (depending on the
value of [) before increasing slightly around 𝑟 ≈ 0.7. The secondary
bump in pressure is due to the outer shell of current. The pressure
gradient near the axis provides the outwardly directed pressure force
which competes against the binding action of the magnetic tension
and this provides the mechanism of flute instability excitation. The
magnitude of the pressure gradient depends strongly on the value of
resistivity [, with lower values producing shallower gradients which
(as shall be seen) are more stable to the flute instability. Indeed, when
[ = 0, the radial pressure profile is nearly flat and the tube stable to
the flute instability.
In all cases unstable to the flute instability, it occurs between

𝑡 = 20 and 𝑡 = 30. The continued driving at the boundaries eventually
injects enough twist that the tube also becomes unstable to the kink
instability. This initially develops linearly alongside or shortly after

MNRAS 000, 1–10 (2021)
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Figure 2. Gradients in the current density generate pressure gradients through Ohmic heating. Axial current density (a), Ohmic heating (b) and pressure (c) as
functions of the radial distance from the tube axis. All plots are from anisotropic cases when 𝑡 = 20 through the plane 𝑧 = 0. Note the sign of the axial current
density 𝑗𝑧 has been flipped for comparison and the Ohmic heating is given by 𝑄[ = [ 𝑗2. The pressure profile of an additional test-case where [ = 0 is also
shown. Line types are indicated in the legend.

the flute instability and then erupts during the its nonlinear phase,
dominating the dynamics and disrupting the flute instability. The
onset and the competition of the two instabilities is strongly affected
by the value of [ and the viscosity model used.

3.2 Instabilities at resistivity [ = 10−4

We now describe the evolution and competition of flute and kink
instabilities in case of resistivity [ = 10−4. Figure 3 shows the
pressure profile of the anisotropic viscosity case (11) at timemoments
𝑡 = 26, 28 and 30 and at 𝑧 = 0. At 𝑡 = 26 the tube becomes unstable
to flute instability with azimuthal wavenumber 𝑚 = 4, when the
plasma begins to bulge out diagonally from the high-pressure core
as seen in figure 3a. As the bulges move radially outwards into lower
pressure regions they expand and accelerate, resulting in the entire
pressure structure appearing taking the shape of a four-leaf clover
(figure 3b). By 𝑡 = 30 the kink instability has disrupted the flute
instability and is developing nonlinearly as evident in figure 3c. As is
typical of nonlinear kink development, the tube continues to release
its stored potential energy in the form of kinetic energy and heat
and the contained plasma becomes highly mixed. In the isotropic
viscosity case which will not be illustrated by a separate figure, the
flute instability is present but damped, and it is quickly outcompeted
by the kink instability which quickly dominates the dynamics.
Figure 4 shows the effect the viscosity models have on the initial

stages of the flute and kink instabilities in 3D. While the flute insta-
bility is observed in both cases, it is damped in the isotropic case and
grows faster in the anisotropic case. In the latter case, the extended
development of the flute instability appears to disrupt the inner core
of field lines and, as will be discussed further below, slows the growth
of the kink instability. In the isotropic case, the flute instability has
been damped to the extent that the kink instability grows uninhibited
and quickly disrupts the fluting.
Despite the flute instability appearing in the isotropic case (fig-

ure 4a), only in the anisotropic case can the onset of both the flute
and kink instabilities be seen in the kinetic energy profile shown in
figure 5b. Here, the nonlinear growth rates of the two instabilities
are found to be 𝛾 = 0.69 for the flute and _ = 2.55 for the kink.
The onset times are approximately 𝑡 = 27 for the flute instability and
𝑡 = 29.5 for the kink. In the isotropic case, the growth rate of the
kink, _ = 2.97, is larger than in the anisotropic case, although the
onset times appear similar, and the kinetic energy profile shows no
evidence of flute instability growth. The faster growth of the kink
compared to that measured in (Quinn et al. 2020c) is attributed to the
relative aspect ratios of the flux tubes. The tube prescribed in (Quinn

et al. 2020c) has an aspect ratio of approximately 20 compared to
the tube studied here which has an aspect ratio of approximately 4.
While the total twist is similar in both tubes (after the drivers have
injected twist up to 𝑡 ≈ 20) the small aspect ratio results in more
turns per unit length, leading to a faster growing instability.
Prior to the onset of either instability, the flux tube is found to

be linearly unstable to perturbations of the form (1) at 𝑡 = 20 via
Suydam’s criterion (3) (figure 6a). The criterion represents a balance
between destabilising pressure gradients and stabilising magnetic
shear and in this case, the shear is so small and the pressure gradient
so large that the tube is unstable over a wide range of radii, for
0.02 / 𝑟 / 0.29. The measure of linear fluting growth rate 𝛾 is
plotted as a function of 𝑟 at the same time (figure 6b). The location of
the peak growth matches nearly exactly the location of the resonant
surface where the observed perturbation grows (figure 3a) and an
estimate of the linear growth rate can be found by averaging 𝛾 over
𝑟 , giving a growth rate of 0.86.
The observed perturbations corresponding to the flute and kink

instabilities at 𝑡 = 26 are shown in Figure 7a. The fluting perturbation
is most easily observed in the pressure and is plotted as a function
of 𝑧 following a line through the point (𝑟, \) = (0.101, 0). The
kink instability is best revealed in the 𝑥-velocity (a proxy for the
radial velocity) through the axis. Comparing the magnitudes of the
perturbations at this time suggests the flute instability is close to
transitioning to its nonlinear phase while the kink instability is still
very much in its linear phase.
The value of 𝑘 for each perturbation is calculated as 𝑘 = 2𝜋/_̃

where _̃ is the wavelength of the perturbation, measured as the dif-
ference between the two peaks closest to 𝑧 = 0 (thus minimising the
influence of line-tying on the measurement). This gives a value of
𝑘flute = 23.61 and 𝑘kink = 4.57 for both viscosity models. Hence,
the observed most unstable fluting perturbation is that of the form (1)
where 𝑚 = 4 and 𝑘 = 23.61 and the observed kink instability is
that where 𝑚 = 1 and 𝑘 = 4.57. Using these values, it is observed
that the fluting perturbation exactly resonates with the field, that is
𝑚𝐵\ (𝑟)/𝑟 + 𝑘𝐵𝑧 (𝑟) = 0, at 𝑟 = 0.125 (figure 7b). This is precisely
the predicted radius of peak linear growth (figure 6b). At this time the
perturbation is close to resonance, that is 𝑚𝐵\ (𝑟)/𝑟 + 𝑘𝐵𝑧 (𝑟) ≈ 0,
over a range of radii from 𝑟 = 0.125 to 0.2.
Comparing the effect of the viscous models on the perturbations,

in the isotropic case, the fluting perturbation is damped, while in
the anisotropic case the kink perturbation is diminished, explaining
why the flute instability appears more readily in the anisotropic case
(figure 5a).
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Figure 3. Pressure profiles during the development of the flute and kink instabilities. Shown are density plots of pressure at 𝑧 = 0 with [ = 10−4 and for the
anisotropic viscosity model. Note the difference in colour scale in figure 3c. The development in the isotropic case is similar.

[t]

(a) Isotropic

(b) Anisotropic

Figure 4. Simultaneous development of flute and kink instabilities in the
isotropic and anisotropic cases illustrated by field lines and pressure contours.
Field lines and contours of pressure (where 𝑝 = 0.3) are plotted at 𝑡 = 28.
Also shown is the velocity driver 𝑢𝑟 (

√︁
𝑥2 + 𝑦2) at 𝑧 = 2. The flute instability

grows in both cases, though faster in the anisotropic case. The initial stages
of the kink instability can also be observed in the field lines of the isotropic
case in subfigure 4a.

3.3 Instabilities at resistivity [ = 10−3

Figure 8 shows a prolonged development of the flute instability and
a slow nonlinear development of the kink instability at the higher
resistivity value [ = 10−3 in the case of anisotropic viscosity. Due
to the enhanced Ohmic heating at [ = 10−3, the pressure gradient
is substantially stronger than at [ = 10−4 and the flute instability is
excited much earlier. Compared to the [ = 10−4 cases, the instability
occurs further from the axis, at 𝑟 ≈ 0.16, and the larger pressure
gradient drives the bulges in profile further from the axis during
the nonlinear phase (figure 8a). These bulges continue to extend
outwards and mix the plasma as they develop. The kink instability
can be observed moving the axis of the tube diagonally upwards
and to the right in figure 8c. At this time in the [ = 10−4 cases,

[t]
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0.0
0.1
0.2
0.3
0.4

KE
isoaniso

(a) Kinetic Energy

26 28 30 32 34t
10−2

10−1

100

KE

λ = 2.97

γ = 0.69

λ = 2.55

(b) Growth rate estimation

Figure 5. Kinetic energy as a function of time showing the development and
measured growth rates 𝛾 and _ of the flute and kink instabilities, respectively.
Resistivity is [ = 10−4 and the second plot is a enlarged version of the first.

the nonlinear development of the kink was at a later stage of its
development (figure 3c). The development of the kink then proceeds
slowly as it moves the axis of the tube through the mixed region to
eventually begin the reconnection process with the outer region of
field that is typical of the instability in this kind of flux tube (as was
observed in our earlier work (Quinn et al. 2020c)).
It is evident from the kinetic energy profile that the flute instability
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Figure 6. Stability and linear growth rate of the flute instability. In panel
6a, Suydam’s stability criterion (3) and is contributing terms are plotted
and in panel 6b the predicted linear growth rate (6) is plotted. Both plots
are produced at 𝑡 = 20 for [ = 10−4 and using the anisotropic model. The
location of the peak linear growth rate is also shown.

develops much earlier than in the [ = 10−4 cases and grows at an
increased rate of 𝛾 = 1.06 (figure 9b). The kink instability grows at
a rate of _ ≈ 0.15, much slower than that observed in the [ = 10−4
cases, and much lower than the flute instability. One key observation
is that, despite the early and disruptive growth of the flute instability,
the kink instability still generates the bulk of the kinetic energy
(figure 9a).
Due to the influence of the drivers on the kinetic energy, the fluting

growth rate is difficult to estimate from the kinetic energy profile
as accurately as in the [ = 10−4 cases. Since the kink instability
occurs after the development of the fluting, its growth rate is similarly
difficult to gauge. Nevertheless, it is clear that the flute instability
grows at a rate of the same order as that in the [ = 10−4 cases. It
is also apparent that the kink instability grows much slower in the
[ = 10−3 cases.
Table 1 summarises the quantitative differences between the results

for the two values of the resistivity [. All values are calculated
from simulations using the anisotropic model with the exception of
𝑘kink which is measured from isotropic results due to noise in the
anisotropic case (the value of 𝑘kink appears similar, however). The
results of the isotropic cases are qualitatively similar. The radius
of peak 𝛾 is calculated at time 𝑡 = 20. The fluting wavenumber 𝑘
and observed 𝑟𝑠 are measured at times just prior to the nonlinear
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Figure 7. Perturbations corresponding to the flute and kink instabilities and
the spatial radial distribution of the associated resonance function. Pressure
and velocity perturbations in 𝑧 (corresponding to the flute and kink insta-
bilities, respectively) and of the resonance surface 𝑚𝐵\ (𝑟 )/𝑟 + 𝑘𝐵𝑧 (𝑟 ) as
a function of 𝑟 using the observed fluting perturbation wavenumbers. All
plots are snapshots at 𝑡 = 26 where [ = 10−4 and the viscosity model is
anisotropic.

Table 1. Quantitative differences in the observed perturbations between
results between different resistivity values [. In all measurements the
anisotropic viscosity model is used except for 𝑘kink where the isotropic vis-
cosity model us used. Measurements times are listed in the main text.

[ = 10−4 [ = 10−3

Theoretical average linear growth rate of flute 𝛾 0.86 1.79
Observed nonlinear growth rate of flute 𝛾 0.69 1.06

Observed growth rate of kink _ 2.55 0.15

Theoretical radius 𝑟𝑠 of peak flute growth rate 0.125 0.163
Observed radius 𝑟𝑠 of peak flute growth rate 0.125 0.163

Observed axial wave number 𝑘flute 23.61 16.05
Observed axial wave number 𝑘kink 4.57 4.53

development of the flute instability, that is at 𝑡 = 22 when [ = 10−3
and 𝑡 = 26 when [ = 10−4. The kink wavenumber is measured at
𝑡 = 26 in both cases. These times allow fair comparison between
measurements.
The longitudinal wavenumber 𝑘kink of the observed kink pertur-

bation remains similar in both cases since the instability is essentially
governed by the twist injected by the driver which remains the same
in both cases. In contrast, the longitudinal wavenumber 𝑘flute of the
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Figure 8. Pressure profiles at 𝑧 = 0 during the development of the flute and kink instabilities in the higher resistivity anisotropic case. The viscosity model is
anisotropic and [ = 10−3. In contrast to the case of [ = 10−4, the nonlinear development of the flute instability has time to mix the interior of the flux tube
before the onset of the kink instability, the growth of which is affected by the mixed plasma.

observed fluting perturbation is lower in the [ = 10−3 cases. This is
due to the different resonant surface within which the perturbation
grows, the location being dictated by the peak of the linear growth
rate. Note that the location of this peak again matches well the lo-
cation of the observed resonant surface, as in the [ = 10−4 cases.
Similar to the [ = 10−4 cases, the peak growth rate predicted by the
linear analysis is the same order of magnitude as the observed growth
rate.

4 DISCUSSION

It is likely that the 𝑚 = 4 azimuthal perturbation is excited due
to influences from the boundaries in the Cartesian box, for example
through the interaction of reflected fast waves generated in part by the
driver. Performing a similar experiment in a cylindrical numerical
domain, or prescribing a variety of perturbations in the Cartesian
domain may reveal other, faster growing modes. The modes may also
be influenced by nonlinear coupling between the 𝑚 > 1 and 𝑚 = 1
modes, as is found in the study of kink and flute oscillations (Terradas
et al. 2018; Ruderman 2017).
As the current distribution, which develops as the flux tube is

twisted, is similar to that found in the initial flux tube configuration
of Quinn et al. (2020c),the question arises why the fluting instability
is not observed in the latter. Although the current distribution (and
thus heating and pressure distributions) in the tubes of Quinn et al.
(2020c)may support the flute instability, the tube is initially perturbed
with a motion close to an unstable eigenmode of the kink instability,
resulting in the instability growing from 𝑡 = 0. In contrast, in the
tubes studied here, such a perturbation must build from numerical

noise, allowing a secondary, fluting perturbation to also build and
become significant enough to observe.
Our set of numerical experiments has shown that the mixing as

a result of the nonlinear flute instability appears to slow the growth
of the kink instability. It seems unlikely that in the linear regime the
perturbations of the flute and kink are able to directly couple, given
that the kink instability generally presents at the axis of a flux tube
and the flute at some resonant surface away from the axis. Further
investigation of the nonlinear interaction between the two instabilities
is required.
Since themain driver of the flute instability is the pressure gradient

generated throughOhmic heating, it is prudent to ask if the same pres-
sure gradient could be generated using physical coronal values of the
resistivity, which are estimated to be approximately [ = 10−8 (Craig
& Litvinenko 2009), and are thus much smaller than those studied
here. Additionally, the simulations presented here do not incorporate
radiation or thermal conduction, two processes which would remove
energy (and hence reduce pressure) from high-pressure regions in a
coronal loop and thus could prevent meeting the required conditions
for the growth of a flute instability. Indeed, at [ = 10−4 the flute
instability was more quickly outcompeted by the kink instability and
appeared to have little impact on the resultant dynamics, which mir-
ror those of other kink instability studies, e.g. (Hood et al. 2009).
This suggests that even lower values of resistivity would result in
flux tubes without any significant flute instability, at least for this
form of driver and mechanism of pressure generation. Regardless,
coronal loops with strong radial pressure gradients have been ob-
served (Foukal 1975), and such loops may be unstable to the flute
instability. Modelling of a prescribed flute-unstable flux tube, as op-
posed to the dynamically stressed loop investigated here, would pro-
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Figure 9. Kinetic energy as a function of time in the cases where [ = 10−3.
The results fromboth viscositymodels are shown. The flute instability appears
earlier than where [ = 10−4 and the growth rate of the kink instability is
decreased.

vide a useful comparison to observations, however it may be difficult
to prescribe a tube which is not also susceptible to kinking. Linear
stability analyses of this kind of flux tube (a dynamically created
zero total axial current tube) focus on the kink instability (Browning
& Van der Linden 2003) so do not provide much insight into the
potential for fluting without a kink.
While our results show that a flux tube can be unstable to the flute

instability and yet the faster growing kink instability can quickly
dominate when the pressure gradient is small enough, the opposite
case is also observed. A faster growing flute instability appears to
slow the growth of the kink instability although, importantly, it does
not fully disrupt the development of the kink. Understanding the
balance between the nonlinear growth rates of the two instabilities is
important for prediction of whether the flute instability may be found
at all in the real solar corona, or whether its realistic growth rate is
too slow compared to that of the kink instability.

5 CONCLUSION

This paper details the nonlinear development of two ideal insta-
bilities, the kink and the flute instabilities, both of which develop
naturally in the course of twisting an initially straight magnetic flux
tube. This provides a different approach to that employed in the sim-

ulations performed in our earlier study (Quinn et al. 2020c) in that
the instabilities are not excited by any prescribed perturbations but,
instead, the field is dynamically driven into an unstable state and
the perturbations provided by noise in the system. Not only is the
kink instability excited due to the twist in the field, but also and near
simultaneously a pressure-driven flute instability can also be excited
in unstable pressure gradients generated by Ohmic heating. Simula-
tions were performed with two values of resistivity, [ = 10−3 and
10−4, and for two forms of viscosity, isotropic and anisotropic. The
results provean initial and important first step towards understanding
nonlinear flute instabilities in the solar corona.
It has been shown that the flute instability can be quickly dominated

by the kink instability if the kink grows substantially faster than the
flute. However, if the flute has time to develop nonlinearly, it mixes
the plasma within the flux tube, generating small scale current sheets
and releasing somemagnetic energy. The overall effect of this mixing
is to slow the growth of the kink instability. The slowed growth of
the kink does not appear to significantly impact the kinetic energy
released during its evolution, only the time over which it is released.
The form of viscosity has been found to significantly affect the

growth of the flute instability. Importantly, isotropic viscosity is found
to damp the growth of the flute instability to the degree that it is unable
to grow appreciably before the onset of the faster growing nonlinear
kink instability.Overall, the anisotropicmodel permits greater release
of kinetic energy. Similar to (Quinn et al. 2020c), isotropic viscous
heating is found to be lower than anisotropic (switching) viscous
heating, by approximately two orders of magnitude.
These numerical experiments have provided evidence that the flute

instability can occur in twisted magnetic flux ropes and grow at
similar rates to the kink instability. Further estimation of the relative
growth rates in more realistic coronal loop setups is required to fully
understand if the flute instability plays a pertinent role in coronal
loop physics.
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APPENDIX A: ASSOCIATED SOFTWARE

A custom version of Lare3d (Arber et al. 2001) has been devel-
oped where a new module for anisotropic viscosity has been in-
cluded. can be found at https://github.com/jamiejquinn/Lare3d,
has been archived at (Quinn et al. 2020a). The version of Lare3d
used in the production of the results presented here, including ini-
tial conditions, boundary conditions, control parameters and the
anisotropic viscosity module, can be found in (Quinn et al. 2020b).
The data analysis and instructions for reproducing all results found
in this report may be also found at https://github.com/JamieJQuinn/
coronal-fluting-instability-analysis and has been archived (Quinn
2021).
All simulations were performed on a single, multi-core machine

with 40 cores provided by Intel Xeon Gold 6138 Skylake processor
running at 2 GHz and 192 GB of RAM, although this amount of
RAM is much higher than was required; a conservative estimate of
the memory used in the largest simulations is around 64 GB. Most
simulations completed in under 2 days.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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